Copied to
clipboard

G = C62.113D4order 288 = 25·32

18th non-split extension by C62 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial

Aliases: C12.17D12, C62.113D4, (C3×C6).36D8, C12⋊S38C4, C12.26(C4×S3), (C3×C12).49D4, (C2×C12).87D6, C6.22(D6⋊C4), C6.22(D4⋊S3), C32(C6.D8), (C3×C6).29SD16, C4.9(C12⋊S3), C329(D4⋊C4), (C6×C12).54C22, C2.2(C327D8), C6.12(Q82S3), C2.5(C6.11D12), C2.2(C3211SD16), C22.14(C327D4), (C3×C4⋊C4)⋊1S3, C4.1(C4×C3⋊S3), C4⋊C41(C3⋊S3), (C32×C4⋊C4)⋊2C2, (C3×C12).48(C2×C4), (C2×C324C8)⋊2C2, (C2×C12⋊S3).9C2, (C2×C6).89(C3⋊D4), (C3×C6).53(C22⋊C4), (C2×C4).36(C2×C3⋊S3), SmallGroup(288,284)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C62.113D4
C1C3C32C3×C6C62C6×C12C2×C12⋊S3 — C62.113D4
C32C3×C6C3×C12 — C62.113D4
C1C22C2×C4C4⋊C4

Generators and relations for C62.113D4
 G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=dad=a-1, cbc-1=dbd=b-1, dcd=a3b3c3 >

Subgroups: 772 in 150 conjugacy classes, 59 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, C23, C32, C12, C12, D6, C2×C6, C4⋊C4, C2×C8, C2×D4, C3⋊S3, C3×C6, C3⋊C8, D12, C2×C12, C2×C12, C22×S3, D4⋊C4, C3×C12, C3×C12, C2×C3⋊S3, C62, C2×C3⋊C8, C3×C4⋊C4, C2×D12, C324C8, C12⋊S3, C12⋊S3, C6×C12, C6×C12, C22×C3⋊S3, C6.D8, C2×C324C8, C32×C4⋊C4, C2×C12⋊S3, C62.113D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D8, SD16, C3⋊S3, C4×S3, D12, C3⋊D4, D4⋊C4, C2×C3⋊S3, D6⋊C4, D4⋊S3, Q82S3, C4×C3⋊S3, C12⋊S3, C327D4, C6.D8, C6.11D12, C327D8, C3211SD16, C62.113D4

Smallest permutation representation of C62.113D4
On 144 points
Generators in S144
(1 139 99 115 71 134)(2 135 72 116 100 140)(3 141 101 117 65 136)(4 129 66 118 102 142)(5 143 103 119 67 130)(6 131 68 120 104 144)(7 137 97 113 69 132)(8 133 70 114 98 138)(9 84 78 127 57 112)(10 105 58 128 79 85)(11 86 80 121 59 106)(12 107 60 122 73 87)(13 88 74 123 61 108)(14 109 62 124 75 81)(15 82 76 125 63 110)(16 111 64 126 77 83)(17 32 38 51 91 43)(18 44 92 52 39 25)(19 26 40 53 93 45)(20 46 94 54 33 27)(21 28 34 55 95 47)(22 48 96 56 35 29)(23 30 36 49 89 41)(24 42 90 50 37 31)
(1 63 22 5 59 18)(2 19 60 6 23 64)(3 57 24 7 61 20)(4 21 62 8 17 58)(9 90 97 13 94 101)(10 102 95 14 98 91)(11 92 99 15 96 103)(12 104 89 16 100 93)(25 134 125 29 130 121)(26 122 131 30 126 135)(27 136 127 31 132 123)(28 124 133 32 128 129)(33 65 78 37 69 74)(34 75 70 38 79 66)(35 67 80 39 71 76)(36 77 72 40 73 68)(41 111 140 45 107 144)(42 137 108 46 141 112)(43 105 142 47 109 138)(44 139 110 48 143 106)(49 83 116 53 87 120)(50 113 88 54 117 84)(51 85 118 55 81 114)(52 115 82 56 119 86)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(2 114)(3 7)(4 120)(6 118)(8 116)(9 37)(10 41)(11 35)(12 47)(13 33)(14 45)(15 39)(16 43)(17 83)(18 63)(19 81)(20 61)(21 87)(22 59)(23 85)(24 57)(25 110)(26 75)(27 108)(28 73)(29 106)(30 79)(31 112)(32 77)(34 122)(36 128)(38 126)(40 124)(42 127)(44 125)(46 123)(48 121)(49 58)(50 84)(51 64)(52 82)(53 62)(54 88)(55 60)(56 86)(65 97)(66 131)(67 103)(68 129)(69 101)(70 135)(71 99)(72 133)(74 94)(76 92)(78 90)(80 96)(89 105)(91 111)(93 109)(95 107)(98 140)(100 138)(102 144)(104 142)(113 117)(130 143)(132 141)(134 139)(136 137)

G:=sub<Sym(144)| (1,139,99,115,71,134)(2,135,72,116,100,140)(3,141,101,117,65,136)(4,129,66,118,102,142)(5,143,103,119,67,130)(6,131,68,120,104,144)(7,137,97,113,69,132)(8,133,70,114,98,138)(9,84,78,127,57,112)(10,105,58,128,79,85)(11,86,80,121,59,106)(12,107,60,122,73,87)(13,88,74,123,61,108)(14,109,62,124,75,81)(15,82,76,125,63,110)(16,111,64,126,77,83)(17,32,38,51,91,43)(18,44,92,52,39,25)(19,26,40,53,93,45)(20,46,94,54,33,27)(21,28,34,55,95,47)(22,48,96,56,35,29)(23,30,36,49,89,41)(24,42,90,50,37,31), (1,63,22,5,59,18)(2,19,60,6,23,64)(3,57,24,7,61,20)(4,21,62,8,17,58)(9,90,97,13,94,101)(10,102,95,14,98,91)(11,92,99,15,96,103)(12,104,89,16,100,93)(25,134,125,29,130,121)(26,122,131,30,126,135)(27,136,127,31,132,123)(28,124,133,32,128,129)(33,65,78,37,69,74)(34,75,70,38,79,66)(35,67,80,39,71,76)(36,77,72,40,73,68)(41,111,140,45,107,144)(42,137,108,46,141,112)(43,105,142,47,109,138)(44,139,110,48,143,106)(49,83,116,53,87,120)(50,113,88,54,117,84)(51,85,118,55,81,114)(52,115,82,56,119,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,114)(3,7)(4,120)(6,118)(8,116)(9,37)(10,41)(11,35)(12,47)(13,33)(14,45)(15,39)(16,43)(17,83)(18,63)(19,81)(20,61)(21,87)(22,59)(23,85)(24,57)(25,110)(26,75)(27,108)(28,73)(29,106)(30,79)(31,112)(32,77)(34,122)(36,128)(38,126)(40,124)(42,127)(44,125)(46,123)(48,121)(49,58)(50,84)(51,64)(52,82)(53,62)(54,88)(55,60)(56,86)(65,97)(66,131)(67,103)(68,129)(69,101)(70,135)(71,99)(72,133)(74,94)(76,92)(78,90)(80,96)(89,105)(91,111)(93,109)(95,107)(98,140)(100,138)(102,144)(104,142)(113,117)(130,143)(132,141)(134,139)(136,137)>;

G:=Group( (1,139,99,115,71,134)(2,135,72,116,100,140)(3,141,101,117,65,136)(4,129,66,118,102,142)(5,143,103,119,67,130)(6,131,68,120,104,144)(7,137,97,113,69,132)(8,133,70,114,98,138)(9,84,78,127,57,112)(10,105,58,128,79,85)(11,86,80,121,59,106)(12,107,60,122,73,87)(13,88,74,123,61,108)(14,109,62,124,75,81)(15,82,76,125,63,110)(16,111,64,126,77,83)(17,32,38,51,91,43)(18,44,92,52,39,25)(19,26,40,53,93,45)(20,46,94,54,33,27)(21,28,34,55,95,47)(22,48,96,56,35,29)(23,30,36,49,89,41)(24,42,90,50,37,31), (1,63,22,5,59,18)(2,19,60,6,23,64)(3,57,24,7,61,20)(4,21,62,8,17,58)(9,90,97,13,94,101)(10,102,95,14,98,91)(11,92,99,15,96,103)(12,104,89,16,100,93)(25,134,125,29,130,121)(26,122,131,30,126,135)(27,136,127,31,132,123)(28,124,133,32,128,129)(33,65,78,37,69,74)(34,75,70,38,79,66)(35,67,80,39,71,76)(36,77,72,40,73,68)(41,111,140,45,107,144)(42,137,108,46,141,112)(43,105,142,47,109,138)(44,139,110,48,143,106)(49,83,116,53,87,120)(50,113,88,54,117,84)(51,85,118,55,81,114)(52,115,82,56,119,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,114)(3,7)(4,120)(6,118)(8,116)(9,37)(10,41)(11,35)(12,47)(13,33)(14,45)(15,39)(16,43)(17,83)(18,63)(19,81)(20,61)(21,87)(22,59)(23,85)(24,57)(25,110)(26,75)(27,108)(28,73)(29,106)(30,79)(31,112)(32,77)(34,122)(36,128)(38,126)(40,124)(42,127)(44,125)(46,123)(48,121)(49,58)(50,84)(51,64)(52,82)(53,62)(54,88)(55,60)(56,86)(65,97)(66,131)(67,103)(68,129)(69,101)(70,135)(71,99)(72,133)(74,94)(76,92)(78,90)(80,96)(89,105)(91,111)(93,109)(95,107)(98,140)(100,138)(102,144)(104,142)(113,117)(130,143)(132,141)(134,139)(136,137) );

G=PermutationGroup([[(1,139,99,115,71,134),(2,135,72,116,100,140),(3,141,101,117,65,136),(4,129,66,118,102,142),(5,143,103,119,67,130),(6,131,68,120,104,144),(7,137,97,113,69,132),(8,133,70,114,98,138),(9,84,78,127,57,112),(10,105,58,128,79,85),(11,86,80,121,59,106),(12,107,60,122,73,87),(13,88,74,123,61,108),(14,109,62,124,75,81),(15,82,76,125,63,110),(16,111,64,126,77,83),(17,32,38,51,91,43),(18,44,92,52,39,25),(19,26,40,53,93,45),(20,46,94,54,33,27),(21,28,34,55,95,47),(22,48,96,56,35,29),(23,30,36,49,89,41),(24,42,90,50,37,31)], [(1,63,22,5,59,18),(2,19,60,6,23,64),(3,57,24,7,61,20),(4,21,62,8,17,58),(9,90,97,13,94,101),(10,102,95,14,98,91),(11,92,99,15,96,103),(12,104,89,16,100,93),(25,134,125,29,130,121),(26,122,131,30,126,135),(27,136,127,31,132,123),(28,124,133,32,128,129),(33,65,78,37,69,74),(34,75,70,38,79,66),(35,67,80,39,71,76),(36,77,72,40,73,68),(41,111,140,45,107,144),(42,137,108,46,141,112),(43,105,142,47,109,138),(44,139,110,48,143,106),(49,83,116,53,87,120),(50,113,88,54,117,84),(51,85,118,55,81,114),(52,115,82,56,119,86)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(2,114),(3,7),(4,120),(6,118),(8,116),(9,37),(10,41),(11,35),(12,47),(13,33),(14,45),(15,39),(16,43),(17,83),(18,63),(19,81),(20,61),(21,87),(22,59),(23,85),(24,57),(25,110),(26,75),(27,108),(28,73),(29,106),(30,79),(31,112),(32,77),(34,122),(36,128),(38,126),(40,124),(42,127),(44,125),(46,123),(48,121),(49,58),(50,84),(51,64),(52,82),(53,62),(54,88),(55,60),(56,86),(65,97),(66,131),(67,103),(68,129),(69,101),(70,135),(71,99),(72,133),(74,94),(76,92),(78,90),(80,96),(89,105),(91,111),(93,109),(95,107),(98,140),(100,138),(102,144),(104,142),(113,117),(130,143),(132,141),(134,139),(136,137)]])

54 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D6A···6L8A8B8C8D12A···12X
order122222333344446···6888812···12
size11113636222222442···2181818184···4

54 irreducible representations

dim1111122222222244
type++++++++++++
imageC1C2C2C2C4S3D4D4D6D8SD16C4×S3D12C3⋊D4D4⋊S3Q82S3
kernelC62.113D4C2×C324C8C32×C4⋊C4C2×C12⋊S3C12⋊S3C3×C4⋊C4C3×C12C62C2×C12C3×C6C3×C6C12C12C2×C6C6C6
# reps1111441142288844

Matrix representation of C62.113D4 in GL6(𝔽73)

0720000
110000
001000
000100
000010
000001
,
72720000
100000
00727200
001000
0000720
0000072
,
7140000
7660000
0007200
0072000
00001657
00001616
,
100000
72720000
0007200
0072000
000010
0000072

G:=sub<GL(6,GF(73))| [0,1,0,0,0,0,72,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,1,0,0,0,0,72,0,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[7,7,0,0,0,0,14,66,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,16,16,0,0,0,0,57,16],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

C62.113D4 in GAP, Magma, Sage, TeX

C_6^2._{113}D_4
% in TeX

G:=Group("C6^2.113D4");
// GroupNames label

G:=SmallGroup(288,284);
// by ID

G=gap.SmallGroup(288,284);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,675,346,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=a^3*b^3*c^3>;
// generators/relations

׿
×
𝔽